Steps for Graphing in Standard Form

1) Find the vertex.

- Use $x=\frac{-b}{2 a}$ to find our x - coordinate of our vertex
- Substitute that x back into our equation, and our solution is the y-coordinate of our vertex.

2) Use your vertex as the center for your table and determine two x values to the left and right of your x - coordinate and substitute those x values back into the equation to determine the y values.
3) Plot your points and connect them from left to right! Your table MUST have 5 points!

Example: Graph $y=-2 x^{2}-4 x+6$
$a=-2 \quad b=-4 \quad c=6$
$x=\frac{-b}{2 a}=\frac{-(-4)}{2(-2)}=\frac{4}{-4}=-1$
$y=-2(-1)^{2}-4(-1)+6=8$

X	Y
-3	0
-2	6
-1	8
0	6
1	0

This parabola has an \qquad at $x=-1$, a \qquad at $(-1,8)$ which is also considered a \qquad a \qquad at $(0,6)$, and \qquad at $(-3,0)$ and $(1,0)$.

Example 1: Graph $y=x^{2}-2 x-3$
$a=b=c=$
Vertex? ()

Y-Intercept?
X-Intercepts?
Up or Down?

Maximum or Minimum?

Example 2: Graph: $y=3 x^{2}-6 x$.
$a=b=c=$ Vertex? ()

Y-Intercept?

x	y

X-Intercepts?
Up or Down?
Maximum or Minimum?

Example 3: Graph y $=2 x^{2}+3$.
$a=b=c=$
Vertex? ()

Y-Intercept?
X-Intercepts?

x	y

Up or Down?
Maximum or Minimum?

Example 4: Graph: $y=-x^{2}+6 x-9$
$a=b=c=$
Vertex? ()

Y-Intercept?

x	y

X-Intercepts?
Up or Down?

Maximum or Minimum?

