Name: \qquad
Date: \qquad Block: \qquad

Linear \& Quadratic Functions Unit Review

What you	Things to remember	Examples	
1. Determine if a relation is a function.	Every input only has one output (each 'x' only has one ' y ') Use the vertical line test on graphs.	a. Determine if the graph is a function.	b. Determine if the table represents a function.
2. Domain and Range	Domain: y - values Range: x - values	 Domain: Domain: Range: Range:	 Domain: Range:
3. Create an input-output table for a function.	"x-y chart" - choose the x-values \& plug them in	a. Create an input-output table for the function $f(x)=2 x-3$. Use $x=-2,-1,0,1$, and 2.	a. Evaluate f (4). $\begin{aligned} & f(x)=x^{2}+3 x-1 \\ & f(4)= \end{aligned}$ b. Find the value of
4. Evaluate functions.	$f(x)$ function notation f(2) means you must substitute a '2' for every ' x ' in the function!	2	$f(x)=4 x-2 \text { when } x=-1$

7. Graph in vertex form	1. Determine your vertex. 2. Create a table with 2 values to the left and right of the vertex. 3. Graph.	a. Graph the following equation: $y=-3(x-2)^{2}+5$
8. Graph in standard form	1. Determine your vertex $\left(x=\frac{-b}{2 a}\right)$. 2. Create a table with 2 values to the left and right of the vertex. 3. Graph.	a. Graph the following equation: $y=x^{2}+4 x+7$
9. Graph in factored form	1. Determine your $\mathrm{x}-$ intercepts and plot them. 2. Determine you vertex (find the middle of the two x intercepts or use $\left.x=\frac{p+q}{2}\right) .$ 3. Plot vertex and graph.	a. Graph the following equation: $y=-(x+1)(x-5)$
10.. Different Forms of Quadratics	Vertex Form: $y=a(x-h)^{2}+k$ (h, k) is vertex Standard Form: $y=a x^{2}+b x+c$ $(0, c)$ is y-intercept	a. Determine the form and associated \quad b. Determine the form and associated characteristics: $y=2(x+4)(x-3)$ characteristics: $y=(x-5)^{2}+9$

	Factored Form: $y=a(x-p)(x-q)$ $(p, 0) \&(q, 0)$ are $x-$ intercepts A determines if graph opens up or down	c. Determine the form and associated characteristics: $y=-x^{2}+6 x-1$	d. Determine the form and associated characteristics: $y=-(x+2)^{2}$
11. Converting between forms	Use your Converting Between Forms graphic organizer.	a. What characteristics can you describe in $y=(x+4)(x-7)$? Convert to standard form. What new characteristic can you give?	b. What characteristics can you describe in $y=(x+3)^{2}-5$ Convert to standard form. What new characteristic can you give?
		c. What characteristics can you describe in $y=x^{2}+6 x+4$ Convert to vertex form. What new characteristic can you give?	d. What characteristics can you describe in $y=x^{2}-5 x-24$ Convert to factored form. What new characteristic can you give?
12. Create equations given characteristics	Determine the best form to represent the given characteristics	a. Given: X-intercepts of $(7,0)$ and $(-8$, 0) and graph opens up	b. Given: Vertex of $(-3,-6)$ and graph has a maximum
13. Create equations given graphs		a. Vertex Form: Intercept Form: Standard Form:	b. Vertex Form: Intercept Form: Standard Form:

14. Applications of the Vertex	Maximum/Minimum indicate finding the vertex. Describe what you know about your equation before completing any solving. Interpret the vertex in terms of what x and y represent.	a. The height in feet of a rocket after x second is given by $y=-16 x^{2}+128 x$. What is the maximum height reached by the rocket and how long does it take to reach that h eight?	b. The arch of bridge is modeled by the equation $y=-1 / 4(x-50)^{2}+95$, where x represent the horizontal distance (in feet) and y represents the vertical distance (in feet). What is the maximum height of the arch?
15. Converting to Vertex Form by Completing the Square		a. $y=x^{2}+4 x+5$	b. $y=2 x^{2}+8 x-12$
		List the Vertex: ()	List the Vertex: ()

