Algebra 1 Unit 2A/3B Review

Name:_____ Date:______Block:_____

Linear & Quadratic Functions Unit Review

What you	Things to remember	Examples	
need to know & be able to do			
1. Determine if a relation is a function.	Every input only has one output (each 'x' only has one 'y') Use the vertical line test on graphs.	a. Determine if the graph is a function	b. Determine if the table represents a function.
2. Domain and Range	Domain: y- values Range: x – values	y 7 6 5 4 3 2 1 2 1 2 1 2 1 2 1 2 3 4 5 6 7 8 x -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -3 -4 -3 -2 -3 -4 -4 -3 -2 -1 -4 -3 -2 -1 -4 -4 -4 -3 -2 -1 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	A P P P P P P P P P P P P P P P P P P P
		Range: Range:	Range:
3. Create an input-output table for a function.	"x-y chart" – choose the x-values & plug them in	a. Create an input-output table for function $f(x) = 2x - 3$. Use $x = -2, -1, 0$ and 2. $\begin{array}{c} x \qquad f(x) = 2x - 3\\ \hline -2 \qquad \\ \hline -1 \qquad \\ 0 \qquad \\ \hline \end{array}$	the a. Evaluate f (4). f(x) = x ² + 3x - 1 f (4) = b. Find the value of
4. Evaluate functions.	f(x) function notation f(2) means you must substitute a '2' for every 'x' in the function!		f(x) = 4x - 2 when $x = -1$.

5. Write a function.		a. Which function is modeled by this table? (Hint: Find the slope and y-int) x 1 2 3 4 y -2 -1 0 1	b. Write the equation of the line the corresponds to the following table: $ \begin{array}{c c} x & f(x) \\ 4 & 9 \\ 8 & 12 \\ 16 & 18 \\ 32 & 30 \\ \end{array} $
5. Create a function & use it to solve a problem.		a. You join a kickboxing class at a local gym. The cost is \$5 per class plus \$30 for the initial membership fee. Write a rule for the total cost of the class as a function of x. How much will it cost if you attend 7 classes?	b. <u>Time Worked</u> <u>1</u> <u>2</u> <u>3</u> <u>4</u> (h) Amount Earned <u>5</u> 10 15 20 <u>f(h)</u>
6. Calculate the average rate of change (slope).	"slope" $\frac{rise}{run}$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ Change in y Change in x	a. Calculate the slope. Then write the equation of the line.	b. Calculate the average rate of change (slope) between the following points on a line. (0, 4) & (-3, 10)
		c. Calculate the slope. Give a labeled answer.	d. Calculate the slope. Give a labeled answer.
		Number of Balloons (in Dollars)	Television
		2 6	€ 350
		4 12	
		6 18	
		8 24	100 50 1 2 3 4 5 6 7 8 9 x Number of Weeks

7. Graph in vertex form	1. Determine your vertex.	a. Graph the following equation: $y = -3(x-2)^2 + 5$	
	 Create a table with 2 values to the left and right of the vertex. Graph. 		
8. Graph in standard form	1. Determine your vertex $\left(x = \frac{-b}{2a}\right)$. 2. Create a table with 2 values to the left and right of the vertex. 3. Graph.	a. Graph the following equation: $y = x^2 + 4x + 7$	
9. Graph in factored form	1. Determine your x- intercepts and plot them. 2. Determine you vertex (find the middle of the two x- intercepts or use $x = \frac{p+q}{2}$). 3. Plot vertex and graph.	a. Graph the following equation: $y = -(x+1)(x-5)$	
10 Different Forms of Quadratics	Vertex Form: $y = a(x - h)^2 + k$ (h, k) is vertex Standard Form: $y = ax^2 + bx + c$ (0, c) is y-intercept	a. Determine the form and associated characteristics: $y = 2(x + 4)(x - 3)$ b. Determine the form and associated characteristics: $y = (x - 5)^2 + 9$	

	Factored Form: y = a(x - p)(x - q) (p, 0) & (q, 0) are x-intercepts A determines if graph opens up or down	c. Determine the form and associated characteristics: y = -x ² + 6x - 1	d. Determine the form and associated characteristics: y = -(x + 2) ²
11. Converting between forms	Use your Converting Between Forms graphic organizer.	a. What characteristics can you describe in y = (x + 4)(x - 7)? Convert to standard form. What new characteristic can you give?	b. What characteristics can you describe in y = (x + 3) ² – 5 Convert to standard form. What new characteristic can you give?
		c. What characteristics can you describe in y = x ² + 6x + 4 Convert to vertex form. What new characteristic can you give?	d. What characteristics can you describe in y = x ² – 5x – 24 Convert to factored form. What new characteristic can you give?
12. Create equations given characteristics	Determine the best form to represent the given characteristics	a. Given: X-intercepts of (7, 0) and (-8, 0) and graph opens up	b. Given: Vertex of (-3, -6) and graph has a maximum
13. Create equations given graphs		a.	b. y y y y y y y y y y y y y

14. Applications of the Vertex	Maximum/Minimum indicate finding the vertex. Describe what you know about your equation before completing any solving. Interpret the vertex in terms of what x and y represent.	a. The height in feet of a rocket after x second is given by y = -16x ² + 128x. What is the maximum height reached by the rocket and how long does it take to reach that h eight?	b. The arch of bridge is modeled by the equation $y = -\frac{1}{4} (x - 50)^2 + 95$, where x represent the horizontal distance (in feet) and y represents the vertical distance (in feet). What is the maximum height of the arch?
15. Converting to Vertex Form by Completing the Square		a. $y = x^2 + 4x + 5$ List the Vertex: ()	b. $y = 2x^2 + 8x - 12$ List the Vertex: ()